Older type 2 diabetic males do not exhibit abnormal pulmonary oxygen uptake and muscle oxygen utilization dynamics during submaximal cycling exercise.

نویسندگان

  • D P Wilkerson
  • D C Poole
  • A M Jones
  • J Fulford
  • D M Mawson
  • C I Ball
  • A C Shore
چکیده

There are reports of abnormal pulmonary oxygen uptake (Vo(2)) and deoxygenated hemoglobin ([HHb]) kinetics in individuals with Type 2 diabetes (T2D) below 50 yr of age with disease durations of <5 yr. We examined the Vo(2) and muscle [HHb] kinetics in 12 older T2D patients with extended disease durations (age: 65 ± 5 years; disease duration 9.3 ± 3.8 years) and 12 healthy age-matched control participants (CON; age: 62 ± 6 years). Maximal oxygen uptake (Vo(2max)) was determined via a ramp incremental cycle test and Vo(2) and [HHb] kinetics were determined during subsequent submaximal step exercise. The Vo(2max) was significantly reduced (P < 0.05) in individuals with T2D compared with CON (1.98 ± 0.43 vs. 2.72 ± 0.40 l/min, respectively) but, surprisingly, Vo(2) kinetics was not different in T2D compared with CON (phase II time constant: 43 ± 17 vs. 41 ± 12 s, respectively). The Δ[HHb]/ΔVo(2) was significantly higher in T2D compared with CON (235 ± 99 vs. 135 ± 33 AU·l(-1)·min(-1); P < 0.05). Despite a lower Vo(2max), Vo(2) kinetics is not different in older T2D compared with healthy age-matched control participants. The elevated Δ[HHb]/ΔVo(2) in T2D individuals possibly indicates a compromised muscle blood flow that mandates a greater O(2) extraction during exercise. Longer disease duration may result in adaptations in the O(2) extraction capabilities of individuals with T2D, thereby mitigating the expected age-related slowing of Vo(2) kinetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Skeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes.

OBJECTIVE People with type 2 diabetes have impaired exercise responses even in the absence of cardiovascular complications. One key factor associated with the exercise intolerance is abnormally slowed oxygen uptake (VO2) kinetics during submaximal exercise. The mechanisms of this delayed adaptation during exercise are unclear but probably relate to impairments in skeletal muscle blood flow. Thi...

متن کامل

Skeletal Muscle Deoxygenation Following the Onset of Moderate Exercise Suggests Slowed Microvascular Blood Flow Kinetics in Type 2 Diabetes

Objective: People with type 2 diabetes (T2DM) have impaired exercise responses even in the absence of cardiovascular complications. One key factor associated with the exercise intolerance is abnormally slowed oxygen uptake ( O2) kinetics during submaximal exercise. The mechanisms of this delayed adaptation during exercise are unclear but likely relate to impairments in skeletal muscle blood flo...

متن کامل

Maximal strength training and increased work efficiency: contribution from the trained muscle bed.

Maximal strength training (MST) reduces pulmonary oxygen uptake (Vo(2)) at a given submaximal exercise work rate (i.e., efficiency). However, whether the increase in efficiency originates in the trained skeletal muscle, and therefore the impact of this adaptation on muscle blood flow and arterial-venous oxygen difference (a-vO(2diff)), is unknown. Thus five trained subjects partook in an 8-wk M...

متن کامل

Gender differences in substrate utilization during submaximal exercise in endurance-trained subjects.

Substrate utilization across the leg during 90 min of bicycle exercise at 58% of peak oxygen uptake (VO(2 peak)) was studied in seven endurance-trained males and seven endurance-trained, eumenorrheic females by applying arteriovenous catheterization, stable isotopes, and muscle biopsies. The female and male groups were matched according to VO(2 peak) per kilogram of lean body mass, physical act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 300 3  شماره 

صفحات  -

تاریخ انتشار 2011